If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-19X-3=0
a = 1; b = -19; c = -3;
Δ = b2-4ac
Δ = -192-4·1·(-3)
Δ = 373
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{373}}{2*1}=\frac{19-\sqrt{373}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{373}}{2*1}=\frac{19+\sqrt{373}}{2} $
| 828+13x=25x+228 | | 7g^2−8g+2=0 | | 8-d=15 | | –m^2+8m+4=0 | | Y=-8x-49 | | 20+1x=1028-3x | | 9x-13=20+5x | | 3(x+10)/4=2x | | X+(2x-4)=80 | | x^−5x−27=0 | | x2−5x−27=0 | | 3(2x+5)=5(x+23) | | G(-5)=x^2+2x | | 4x–8=2(2x-4) | | 30(3.1-1.16Y)+50y=95 | | 260/n=24 | | 2(x+14)=4(x+6) | | 7y+70=6 | | x^+14x+3=0 | | 10x-15=20+5x | | 6x-21=20+5x | | X-2y=-50 | | -14-5b+3=6(5b+4) | | 2(-2+4t/5)+3t=13 | | g+5=5-7g | | -3(4h+3)=-24h+39 | | 9x+22=3x+4 | | 7x-5=32+5x | | r-3=1417 | | 30=3x(x) | | 24r+48=18r-36 | | -20y+10=-6-12y |